ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804+A2

Owner of the Declaration dormakaba International Holding GmbH

Programme holder Institut Bauen und Umwelt e.V. (IBU)

Publisher Institut Bauen und Umwelt e.V. (IBU)

Declaration number EPD-DOR-20220088-CBA1-EN

Issue date 04.05.2022

TS 68/TS 69 dormakaba

ECO PLATFORM

VERIFIED

www.ibu-epd.com | https://epd-online.com

General Information

dormakaba

Programme holder

IBU – Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany

Declaration number

EPD-DOR-20220088-CBA1-EN

This declaration is based on the product category rules:

Building Hardware products, 11.2017 (PCR checked and approved by the SVR)

Issue date

04.05.2022

Valid to

03.05.2027

Dipl. Ing. Hans Peters (chairman of Institut Bauen und Umwelt e.V.)

Dr. Alexander Röder

(Managing Director Institut Bauen und Umwelt e.V.))

TS 68/TS 69

Owner of the declaration

dormakaba International Holding GmbH DORMA Platz 1 58256 Ennepetal Germany

Declared product / declared unit

1 door closer (1 piece) TS 68/TS 69

Scope:

This Environmental Product Declaration refers to a specific door closer manufactured by dormakaba China Ltd. The production site is located in Suzhou (China).

The data represents the year 2020.

The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

The EPD was created according to the specifications of *EN 15804+A2*. In the following, the standard will be simplified as *EN 15804*.

Verification

The standard *EN 15804* serves as the core PCR Independent verification of the declaration and data according to *ISO 14025:2011*

internally

externally

Dr.-Ing. Wolfram Trinius (Independent verifier)

Product

Product description/Product definition

The TS 68 and TS 69 are low-cost door closers which can be universally used on all common door types. The door closers are particularly quick and easy to install.

Ham leten

For the use and application of the product the respective national provisions at the place of use apply. The standards which can be applied are the following:

- EN 1154
- EN 1634-1

Application

The door closers are used for any standard door and almost all mounting position.

Technical Data

The door closers have following technical properties:

Technical Data		TS 68
Selectable closing force (variable v shoe and templating)	ia arm power	EN 2/3/4
Door width	≤ 1100 mm	•
External doors, outward opening		-
Non-handed		•
Arm	Standard arm	•
	Slide channel	-
Closing speed adjustable via 2 independent valves	180° – 15° 15° – 0°	•
Backcheck		-
Delayed action		-
Hold-open		0
Weight in kg		1.4
Dimensions in mm	Length Overall depth Height	220.0 45.0 53.5

● Yes - no O Option

^{*} For high and heavy doors, external doors, and for doors required to close against high wind pressure, we recommend dormakaba TS 83.

Technical Data	TS 69	
Selectable closing force		EN
(variable via arm power shoe and t	2/3/4	
Door width	•	
External doors, outward opening		-
Fire and smoke check doors	≤ 1100 mm	-/●/●
Non-handed		•
Arm	Standard arm	•
	Slide channel	_
Closing speed adjustable via	180° – 15°	
2 independent valves	15° - 0°	
Backcheck		_
Delayed action		-
Hold-open		0
Weight in kg		1.6
Dimensions in mm	Length	226.0
	Overall depth	47.0
	Height	68.0
Door closer tested to EN 1154		•
CE mark for construction products		-/●/●

● Yes - No O Option

Performance data of the product with respect to its characteristics in accordance with the relevant technical provision which can be applied are mentioned above.

Base materials/Ancillary materials

The major material compositions including the packaging of the product are listed below:

Name	Value	Unit
Steel	66	%
Aluminium	19	%
Paper	7	%
Plastics	5	%
Lubricants	3	%

The product includes partial articles which contain substances listed in the Candidate List of *REACH* Regulation 1907/2006/EC (date: 17.01.2022) exceeding 0.1 percentage by mass: yes

 Lead (Pb): 7439-92-1 (CAS-No.) is included in some of the alloys used. The concentration of lead in each individual alloy does not exceed 4.0% (by mass).

The Candidate List can be found on the ECHA website address: https://echa.europa.eu/de/home.

Reference service life

The reference service life of the TS 68/TS 69 door closers depend on the traffic pattern and degree of usage of the door. These closers are rated to *EN 1154*, meaning they are designed to withstand a minimum of 500,000 cycles. The reference service life amounts for 20 years. This corresponds with approx. 25,000 cycles per year.

LCA: Calculation rules

Declared Unit

The declared unit is 1 piece of the product: TS68/TS 69.

Declared unit

Name	Value	Unit
Declared unit	1	piece/prod uct
Mass of declared Product	2.07	kg

System boundary

The type of EPD is: cradle to gate with options, modules C1–C4, and module D

(A1-A3 + C + D and additional modules: A4 + A5)

Production - Module A1-A3

The product stage includes:

- A1, raw material extraction, processing and mechanical treatments, processing of secondary material input (e.g. recycling processes),
- A2, transport to the manufacturer,
- A3, manufacturing and assembly including provision of all materials, products and energy, as well as waste processing up to the end-of waste state.

Construction stage - Modules A4-A5

The construction process stage includes:

- A4, transport to the building site;
- A5, installation into the building;

including provision of all materials, products and energy, as well as waste processing up to the end-of waste state or disposal of final residues during the construction process stage.

End-of-life stage- Modules C1-C4 and D

The end-of-life stage includes:

- C1, de-construction, demolition:
- C2, transport to waste processing;
- C3, waste processing for reuse, recovery and/or recycling;
- C4, disposal;

including provision and all transport, provision of all materials, products and related energy and water use. Module D (Benefits and loads beyond the system boundary) includes:

— D, recycling potentials, expressed as net impacts and benefits.

Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to *EN 15804* and the building context, respectively the product-specific characteristics of performance, are taken into account.

Background database: GaBi, SP40.

LCA: Scenarios and additional technical information

Characteristic product properties Information on biogenic Carbon

Information on describing the biogenic Carbon Content at factory gate

Gontoni at lactory gate		
Name	Value	Unit
Biogenic Carbon Content in accompanying packaging	0.05	kg C

Additional technical information for the declared modules.

Transport to the building site (A4)

Name	Value	Unit
Litres of fuel truck (per piece)	0.00276	l/100km
Transport distance (truck)	1500	km
Capacity utilisation (including empty runs) average	55	%
Transport distance (ship)	10000	km

Installation into the building (A5)

Name	Value	Unit
Output substances following waste treatment on site (paper	0.136	kg
packaging)	01.00	.,9

End of life (C1-C4)

C1: The product dismantling from the building is done manually without environmental burden.

C2: Transport to waste treatment at end of life is 50km.

Name	Value	Unit
Collected separately	1.93	kg
Recycling	1.75	kg
Energy recovery	0.1	kg
Final deposition	0,08	kg

Reuse, recovery and/or recycling potentials (D), relevant scenario information

Name	Value	Unit
Recycling	100	%

Collection rate is 100%.

LCA: Results

DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; ND = MODULE OR INDICATOR N $^{\circ}$	OT
DECLARED: MNR = MODULE NOT RELEVANT)	

PROI	DUCT STAGE CONSTRUCTI ON PROCESS USE STAGE STAGE					EN	D OF LI	FE STA		BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES						
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Х	Х	Х	Х	Х	ND	ND	MNR	MNR	MNR	Х	ND	Х	Х	Х	Х	Х

RESULTS OF THE LCA - ENVIRONMENTAL IMPACT according to EN 15804+A2: 1 door closer

Core Indicator	Unit	A1-A3	A4	A5	В6	C1	C2	C3	C4	D
GWP-total	[kg CO ₂ -Eq.]	1.46E+1	3.39E-1	1.93E-1	0.00E+0	0.00E+0	8.00E-3	2.46E-1	1.00E-3	-2.76E+0
GWP-fossil	[kg CO ₂ -Eq.]	1.48E+1	3.27E-1	5.00E-3	0.00E+0	0.00E+0	8.00E-3	2.46E-1	1.00E-3	-2.75E+0
GWP-biogenic	[kg CO ₂ -Eq.]	-2.09E-1	1.20E-2	1.88E-1	0.00E+0	0.00E+0	3.72E-4	5.73E-6	4.33E-6	-8.00E-3
GWP-luluc	[kg CO ₂ -Eq.]	8.02E-3	7.57E-6	3.17E-6	0.00E+0	0.00E+0	1.91E-7	1.39E-5	3.65E-6	-4.64E-4
ODP	[kg CFC11-Eq.]	2.74E-10	3.38E-17	3.48E-17	0.00E+0	0.00E+0	8.49E-19	1.24E-16	4.70E-18	-1.93E-11
AP	[mol H+-Eq.]	6.80E-2	3.00E-3	5.40E-5	0.00E+0	0.00E+0	8.04E-6	4.38E-5	9.09E-6	-1.00E-2
EP-freshwater	[kg P-Eq.]	1.14E-5	7.08E-8	6.80E-9	0.00E+0	0.00E+0	1.72E-9	1.98E-8	2.18E-9	-1.55E-6
EP-marine	[kg N-Eq.]	1.10E-2	7.41E-4	1.95E-5	0.00E+0	0.00E+0	2.56E-6	9.87E-6	2.34E-6	-1.00E-3
EP-terrestrial	[mol N-Eq.]	1.24E-1	8.00E-3	2.43E-4	0.00E+0	0.00E+0	2.85E-5	1.99E-4	2.57E-5	-1.40E-2
POCP	[kg NMVOC-Eq.]	3.50E-2	2.00E-3	5.17E-5	0.00E+0	0.00E+0	7.24E-6	2.73E-5	7.08E-6	-4.00E-3
ADPE	[kg Sb-Eq.]	1.34E-4	9.52E-9	5.49E-10	0.00E+0	0.00E+0	2.41E-10	1.70E-9	1.14E-10	-1.40E-5
ADPF	[MJ]	1.58E+2	4.50E+0	6.10E-2	0.00E+0	0.00E+0	1.14E-1	1.14E-1	1.70E-2	-3.87E+1
WDP	[m³ world-Eq deprived]	2.64E+0	6.30E-4	2.40E-2	0.00E+0	0.00E+0	1.58E-5	2.50E-2	1.33E-4	-1.38E-1

GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Caption Eutrophication potential; POCP = Formation potential of tropospheric ozone photochemical oxidants; ADPE = Abiotic depletion potential for non-fossil resources; ADPF = Abiotic depletion potential for fossil resources; WDP = Water (user) deprivation potential

RESULTS OF THE LCA - INDICATORS TO DESCRIBE RESOURCE USE according to EN 15804+A2: 1 door

closer										
Indicator	Unit	A1-A3	A4	A5	В6	C1	C2	С3	C4	D
PERE	[MJ]	2.04E+1	1.40E-2	1.64E+0	0.00E+0	0.00E+0	3.59E-4	1.92E-1	2.00E-3	-1.68E+1
PERM	[MJ]	1.79E+0	0.00E+0	-1.63E+0	0.00E+0	0.00E+0	0.00E+0	-1.62E-1	0.00E+0	0.00E+0
PERT	[MJ]	2.22E+1	1.40E-2	1.10E-2	0.00E+0	0.00E+0	3.59E-4	3.00E-2	2.00E-3	-1.68E+1
PENRE	[MJ]	1.54E+2	4.50E+0	6.10E-2	0.00E+0	0.00E+0	1.14E-1	3.84E+0	1.70E-2	-3.87E+1
PENRM	[MJ]	3.73E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	-3.73E+0	0.00E+0	0.00E+0
PENRT	[MJ]	1.58E+2	4.50E+0	6.10E-2	0.00E+0	0.00E+0	1.14E-1	1.14E-1	1.70E-2	-3.87E+1
SM	[kg]	1.32E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
RSF	[MJ]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
NRSF	[MJ]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
FW	[m³]	6.81E-2	2.57E-5	5.63E-4	0.00E+0	0.00E+0	6.45E-7	6.01E-4	4.19E-6	-3.00E-2

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources; penke = Use of non-renewable primary energy resources; penke = Use of non-renewable primary energy resources; penke = Use of non-renewable primary energy resources used as raw materials; penker = Use of non-renewable primary energy resources; penker = Use of non-re

RESULTS OF THE LCA – WASTE CATEGORIES AND OUTPUT FLOWS according to EN 15804+A2:

Indicator	Unit	A1-A3	A4	A 5	В6	C1	C2	C3	C4	D
HWD	[kg]	1.01E-5	4.38E-10	8.97E-11	0.00E+0	0.00E+0	1.11E-11	4.34E-10	2.53E-10	-2.85E-7
NHWD	[kg]	1.59E+0	4.61E-4	6.00E-3	0.00E+0	0.00E+0	1.17E-5	2.60E-2	8.40E-2	-6.20E-1
RWD	[kg]	1.83E-3	4.87E-6	3.20E-6	0.00E+0	0.00E+0	1.23E-7	4.23E-6	1.89E-7	-4.00E-3
CRU	[kg]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
MFR	[kg]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	1.74E+0	0.00E+0	0.00E+0
MER	[kg]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
EEE	[MJ]	0.00E+0	0.00E+0	2.92E-1	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
EET	[MJ]	0.00E+0	0.00E+0	5.29E-1	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components
Caption for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EEE = Exported
thermal energy

RESULTS OF THE LCA – additional impact categories according to EN 15804+A2-optional:

Indicator	Unit	A1-A3	A4	A5	В6	C1	C2	C3	C4	D
PM	[Disease Incidence]	1.67E-6	4.40E-8	2.99E-10	0.00E+0	0.00E+0	4.23E-11	5.58E-10	1.13E-10	-1.56E-7
IRP	[kBq U235- Eq.]	2.35E-1	6.97E-4	4.95E-4	0.00E+0	0.00E+0	1.75E-5	3.81E-4	1.95E-5	-8.15E-1
ETP-fw	[CTUe]	5.92E+1	3.19E+0	2.90E-2	0.00E+0	0.00E+0	8.10E-2	4.30E-2	9.00E-3	-1.35E+1
HTP-c	[CTUh]	5.21E-9	6.00E-11	1.53E-12	0.00E+0	0.00E+0	1.52E-12	3.70E-12	1.41E-12	-4.88E-10
HTP-nc	[CTUh]	1.64E-7	2.62E-9	6.62E-11	0.00E+0	0.00E+0	6.50E-11	3.75E-10	1.55E-10	-9.62E-9
SQP	[-]	3.99E+1	1.20E-2	1.60E-2	0.00E+0	0.00E+0	2.93E-4	3.40E-2	3.00E-3	-1.32E+0

PM = Potential incidence of disease due to PM emissions; IR = Potential Human exposure efficiency relative to U235; ETP-fw = Potential Caption comparative Toxic Unit for ecosystems; HTP-c = Potential comparative Toxic Unit for humans (cancerogenic); HTP-nc = Potential comparative Toxic Unit for humans (not cancerogenic); SQP = Potential soil quality index

Disclaimer 1 – for the indicator "Potential Human exposure efficiency relative to U235". This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Disclaimer 2 – for the indicators "abiotic depletion potential for non-fossil resources", "abiotic depletion potential for fossil resources", "water (user) deprivation potential, deprivation-weighted water consumption", "potential comparative toxic unit for ecosystems", "potential comparative toxic unit for humans – cancerogenic", "Potential comparative toxic unit for humans – not cancerogenic", "potential soil quality index". The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

References

EN 1154

EN 1154-2003; Building hardware - Controlled door closing devices - Requirements and test methods.

EN 1634-1

EN 1634-1:2018; Fire resistance and smoke control tests for door and shutter assemblies, openable windows and elements of building hardware - Part 1: Fire resistance test for door and shutter assemblies and openable windows.

EN 15804+A2

EN 15804:2019+A2 (in press), Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products.

REACH Regulation 1907/2006/EC

Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH).

Further References

IBU

Institut Bauen und Umwelt e.V.: General Instructions for the EPDs programme of Institut Bauen und Umwelt e.V. Version 2.0., Berlin: Institut Bauen und Umwelt e.V., 2021. www.ibu-epd.com.

GaBi

Sphera Solutions GmbH Gabi Software System and Database for Life Cycle Engineering 1992-2020 Version 10.0.0.71 University of Stuttgart Leinfelden-Echterdingen

GaBi ts documentation

GaBi life cycle inventory data documentation (https://www.gabi-software.com/support/gabi/gabidatabase-2020-lci-documentation/).

LCA-tool dormakaba

LCA-tool, IBU-DOR-202104-LT1-EN, Developed by Sphera Solutions GmbH.

PCR Part A

PCR – Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Project Re-port according to EN 15804+A2:2019, Version 1.0, 2020, Institut Bauen und Umwelt e.V., www.ibu-epd.com.

PCR Part B

PCR – Part B: Requirements on the EPD for Building Hardware product, version 1.2, Institut Bauen und Umwelt e.V., www.ibu-epd.com, 2017.

Publisher

Germany

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin

+49 (0)30 3087748- 0 Tel Fax +49 (0)30 3087748- 29 info@ibu-epd.com Mail Web www.ibu-epd.com

Programme holder

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany

+49 (0)30 - 3087748- 0 Tel +49 (0)30 – 3087748 - 29 Fax Mail info@ibu-epd.com Web www.ibu-epd.com

Author of the Life Cycle **Assessment**

Sphera Solutions GmbH Hauptstraße 111- 113 70771 Leinfelden-Echterdingen Germany

+49 711 341817-0 +49 711 341817-25 Fax Mail info@sphera.com Web www.sphera.com

Tel

Owner of the Declaration

dormakaba International Holding DORMA Platz 1 58256 Ennepetal Germany

Tel +49 2333 793-0 Fax +49 2333 793-4950 Mail info.de@dormakaba.com Web www.dormakaba.com